

Overview

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/syntactic]

	tests

	
[image: Travis-CI Build Status] [https://travis-ci.com/metatooling/syntactic]

[image: Coverage Status] [https://codecov.io/github/metatooling/syntactic]

	package

	
[image: PyPI Package latest release] [https://pypi.org/pypi/syntactic] [image: PyPI Wheel] [https://pypi.org/pypi/syntactic] [image: Supported versions] [https://pypi.org/pypi/syntactic] [image: Supported implementations] [https://pypi.org/pypi/syntactic]

[image: Commits since latest release] [https://github.com/metatooling/syntactic/compare/v0.1.3...master]

https://syntactic.readthedocs.io/

Customizable syntax for Python.

Possible uses

	Experimenting with possible language features.

	Boilerplate reduction.

Examples

Unicode lambdas

from __syntax__ import unicode_lambda

func = λx: x + 1

is equivalent to

func = lambda x: x + 1

SQL template literals

Embedded sql:

from __syntax__ import sql_literals

engine.query(sql`SELECT author FROM books WHERE name = {book} AND author = {author}`)

is equivalent to:

engine.query('SELECT author FROM books WHERE name = ? AND author = ?', [book, author])

Limitations

The example transformers are written in a fragile way. They are intended only as
inspiration rather than production-ready transformers. If you want to add some
production-ready ones, pull-requests are welcome.

Related work

Several projects have explored manipulating Python syntax.

	MacroPy [http://macropy3.readthedocs.io/en/latest/]

	future-fstrings [https://github.com/asottile/future-fstrings]

	experimental [https://github.com/aroberge/experimental]

Contents

	Overview
	Possible uses

	Examples

	Limitations

	Related work

	Installation
	Basic

	With optional command-line tool

	Usage
	Create a new custom syntax

	Use a custom syntax

	View transformed syntax

	Reference
	syntactic package

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	0.1.0 (2019-12-30)

Indices and tables

	Index

	Module Index

	Search Page

Overview

	docs

	[image: Documentation Status] [https://readthedocs.org/projects/syntactic]

	tests

	
[image: Travis-CI Build Status] [https://travis-ci.com/metatooling/syntactic]

[image: Coverage Status] [https://codecov.io/github/metatooling/syntactic]

	package

	
[image: PyPI Package latest release] [https://pypi.org/pypi/syntactic] [image: PyPI Wheel] [https://pypi.org/pypi/syntactic] [image: Supported versions] [https://pypi.org/pypi/syntactic] [image: Supported implementations] [https://pypi.org/pypi/syntactic]

[image: Commits since latest release] [https://github.com/metatooling/syntactic/compare/v0.1.3...master]

https://syntactic.readthedocs.io/

Customizable syntax for Python.

Possible uses

	Experimenting with possible language features.

	Boilerplate reduction.

Examples

Unicode lambdas

from __syntax__ import unicode_lambda

func = λx: x + 1

is equivalent to

func = lambda x: x + 1

SQL template literals

Embedded sql:

from __syntax__ import sql_literals

engine.query(sql`SELECT author FROM books WHERE name = {book} AND author = {author}`)

is equivalent to:

engine.query('SELECT author FROM books WHERE name = ? AND author = ?', [book, author])

Limitations

The example transformers are written in a fragile way. They are intended only as
inspiration rather than production-ready transformers. If you want to add some
production-ready ones, pull-requests are welcome.

Related work

Several projects have explored manipulating Python syntax.

	MacroPy [http://macropy3.readthedocs.io/en/latest/]

	future-fstrings [https://github.com/asottile/future-fstrings]

	experimental [https://github.com/aroberge/experimental]

Installation

Basic

With pip:

pip install syntactic

With Poetry:

poetry add syntactic

With optional command-line tool

With pip:

pip install 'syntactic[cli]'

With Poetry:

poetry add 'syntactic[cli]'

Usage

Create a new custom syntax

1. Make a transformer

Create a function that takes the original unicode source string and returns a new unicode source string.

def unicode_lambdas(source: str) -> str:
 """Convert unicode lambdas into regular lambdas."""
 return source.replace("λ", "lambda ")

	Put that function in a module named __syntax__.py. It may be in a package.

Use a custom syntax

	Install syntactic.

	Install a module that provides a custom syntax plugin.

	In the module where you want to use the syntax, put the syntactic coding declaration at the top of the file.

coding: syntactic

	In the module where you want to use the syntax, import the desired syntax.

from __syntax__ import unicode_lambdas

If the module is in a package, namespace the import as normal. For example:

from syntactic.examples.__syntax__ import unicode_lambdas

	Write code using the custom syntax. The full module should look like this:

coding: syntactic

from __syntax__ import unicode_lambdas

add_one = λx: x+1

print(add_one(1))

	Run the module using the python environment where syntactic is installed. The output should be:

2

View transformed syntax

View the expanded form of a Python file by using the optional command-line tool.

	Ensure Syntactic’s` cli extra is installed.

	Use python -m syntactic show <filename>.

Reference

	syntactic package
	Submodules

	syntactic.app module

	syntactic.cli module

	syntactic.examples module

	Module contents

syntactic package

Submodules

syntactic.app module

Support for custom syntax.

	
class syntactic.app.IncrementalDecoder(errors='strict')

	Bases: codecs.BufferedIncrementalDecoder

A buffered incremental decoder for custom syntax.

	
class syntactic.app.StreamReader(stream, errors='strict')

	Bases: encodings.utf_8.StreamReader

decode is deferred to support better error messages

	
stream

	Get the stream.

	
syntactic.app.decode(source_bytes, errors='strict')

	Decode the utf-8 input and transform it with the named transformers.

	
syntactic.app.get_transformer_pairs(source)

	Return the module and function names of requested transformers.

Searches for from __syntax__ import

	Return type

	List[Tuple[str, str]]

	
syntactic.app.main()

	Register the codec with Python.

syntactic.cli module

syntactic.examples module

Module contents

Syntactic provides custom syntax for Python.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/metatooling/syntactic/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

syntactic could always use more documentation, whether as part of the
official syntactic docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/metatooling/syntactic/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up syntactic for local development:

	Fork syntactic [https://github.com/metatooling/syntactic]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:your_name_here/syntactic.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, run all the checks, doc builder and spell checker with tox [http://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a file in changelog.d/ describing the changes. The filename should be {id}.{type}.rst, where {id} is the number of the GitHub issue or pull request and {type} is one of breaking (for breaking changes), deprecation (for deprecations), or change (for non-breaking changes). For example, to add a new feature requested in GitHub issue #1234, add a file called changelog.d/1234.change.rst describing the change.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/metatooling/syntactic/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

	Metatooling - https://github.com/metatooling/

Changelog

0.1.0 (2019-12-30)

Changes

	First release on PyPI.

—

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 syntactic	

 	
 	
 syntactic.app	

 	
 	
 syntactic.examples	

Index

 D
 | G
 | I
 | M
 | S

D

 	
 	decode() (in module syntactic.app)

G

 	
 	get_transformer_pairs() (in module syntactic.app)

I

 	
 	IncrementalDecoder (class in syntactic.app)

M

 	
 	main() (in module syntactic.app)

S

 	
 	stream (syntactic.app.StreamReader attribute)

 	StreamReader (class in syntactic.app)

 	
 	syntactic (module)

 	syntactic.app (module)

 	syntactic.examples (module)

src

	syntactic package
	Submodules

	syntactic.app module

	syntactic.cli module

	syntactic.examples module

	Module contents

 _static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Overview

 		
 Overview

 		
 Possible uses

 		
 Examples

 		
 Unicode lambdas

 		
 SQL template literals

 		
 Limitations

 		
 Related work

 		
 Installation

 		
 Basic

 		
 With optional command-line tool

 		
 Usage

 		
 Create a new custom syntax

 		
 1. Make a transformer

 		
 Use a custom syntax

 		
 View transformed syntax

 		
 Reference

 		
 syntactic package

 		
 Submodules

 		
 syntactic.app module

 		
 syntactic.cli module

 		
 syntactic.examples module

 		
 Module contents

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 0.1.0 (2019-12-30)

 		
 Changes

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

